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SUMMARY

A theory is developed for the one-dimensional motion of a cylindrical

gas bag used as an impact cushion. The effect of shock waves in the gas

as well as stress in the bag skin is considered. The applicability of the

theory to landings both in an atmosphere and on the moon is discussed and

the regime of validity of the theory is presented. The use of a series

expansion for computing shock-wave properties in the analysis, the strong

shock approximation, and the exact shock relations are compared and dis-

cussed. The regime of physical parameters for which both the wave model

and the series expansion are valid is presented. The method of application

of the theory to impact problems is outlined.

INTRODUCTION

Over the past five years there has been a growing interest in impact

attenuation. Considerable experimental and some theoretical work has been

done on the study of impact. Drop tests have been performed at the

University of Texas (refs. I to 5) using numerous impact attenuation

techniques, including crushable structures, foamed plastics, and inflated

cylindrical bags. Most of that work was performed at low impact speeds.

The use of inflated bags for cushioning the impact of ejected aircraft

pilot compartments has been investigated, as well as impact attenuation

associated with atmosphere entry vehicles (refs. 6 to 8). A theory of low-

speed impact of various shaped gas bags has been developed by Esgar and

Morgan (ref. 9). Martin and Howe have developed a uniform compression

theory for the impact of inflated spheres (ref. lO) as well as a theory

which accounts, in an approximate way, for wave i_K_tion in the inflating

gas (ref. ii). In these last two papers, a two-dimensional unsteady

problem was simplified in various ways to achieve a workable analysis.

The problem in the present analysis has a simple one-dimensional

geometry. For this reason, fewer assumptions need be made in the develop-

ment of the theory. Basically, the problem has one space dimension and

one time dimension as independent variables. The analysis is valid up to

the time that the payload comes to rest. In solving this problem, it is

necessary to couple the effects of the unsteady wave motion in the

inflating gas with those of the structural behavior of the bag skin.
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The latter aspect of the problem could be exceedingly difficult in itself
if one attempted to solve it as an unsteady elasticity problem with a
moving discontinuous load. This would introduce two space and one time
dimension, which whencombined with the unsteady gas dynamics might make
solving the problem a virtually hopeless task. The waves in the skin
would be coupled with the waves in the gas although the two would not
moveat the samespeed and the motion of the payload would be exceedingly
complicated.

Instead, we adopt a simple model for the bag, considering it to be
a cylindrical membranewith high sound speed, and devote most of our
attention to the wave motion in the inflating gas. The interaction of
families of gas waves is examined, and a reasonable gas wave model is
chosen for analysis. The conditions under which the model is valid are
examined for impact on a planet with an atmosphere as well as on an air-
less surface. The property relationships across the shock waves in the
gas are expressed in three ways: by the series expansion method and the
strong shock approximation which have the advantage of analytical sim-
plicity_ and the exact method. The conditions that limit the use of the
first two methods are discussed. Relationships for maximumacceleration_
stopping distance (stroke), bag stresses, and pressures are derived from
the theory.

SYMBOLS

A

c

F

g

K

m

mb

n

N

cross-sectional area of cylindrical bag, and coefficients in

equation (48)

sound speed in the inflating gas

dimensionless sound speed defined by equation (8)

forces in sketches (a) and (b)

gravitational constant at the earth's surface

defined by equation (ii)

mass

mass of sides of bag

allowable number of g's acceleration

force per unit length

p pressure



r

R

t

T

U

V

W

X

Y

0

cross-sectional radius of cylindrical bag

gas constant

time

dimensionless time defined by equation (14)

tempe ratture

velocity in positive y direction

dimensionless velocity defined by equation ($)

instantaneous volume of gas bag

shock speed relative to gas at state i

defined by equation (49)

distance normal to impact surface (positive outward)

dimensionless distance defined by equat ion (8)

defined by equation (23)

ratio of specific heats of inflating gas

mass per unit surface area

Subscripts

a

b

c

d, e_ f

o, i,_ states shown on sketch (d), and subscripts on coefficients in

2, 3_ equation (45)

oi, _,_ shock connecting states 0 and I, I and 2, 2 and 3
_3 J

point on sketches (c) and (d) or atmosphere, axial

point on sketches (c) and (d) or side walls of bag

point on sketches(cl or cir  e e tial

points on sketches (c) and (d)

g inflating gas
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i

J

P

bottom

condition ahead of a shock

conditions behind a shock

payload

bottom of bag

ANALY SIS

The Equation of Motion

Consider a nonslender I cylindrical bag of height Yo and cross-

sectional area A. The bag is inflated to a pressure Po" On top of the

bag is a payload of mass mp. The pressure on the outside of the payload

is Pa" It is assumed that the bag is stiff enough to remain cylindrical

under Po " Pa" The system moves along the axis of the right cylinder
with speed lUol and strikes a flat surface normal to the cylinder axis.

During the impact, the pressure in the inflating gas at the payload is p

(at height y above the surface). A free body diagram of the payload is

shown in sketch (a) (where it is assumed that the bottom of the payload

is flat and always normal to the axis). The momentum theorem applied to

Y

PQ

tttt
P

FI(: TOTAL FORCE

BAG EXERTS ON rnp)

Sketch (a)

that free body is_ with gravity forces neglected,

mpy = (p - Pa )A - F i (i)

IA nonslender bag is defined as one not subject to long column type

buckling. For the case of a circular cylindrical bag and low impact speed,

it appears that if the diameter is less than about 75 percent of the

initial bag height, the gas bag buckles and is unstable (ref. 5).



A free body diagram of the sides of the bag_ excluding the gas_ is shown
in sketch (b). In time dt_ the skin changesmomentumby the amount msvdu

msv

F I

Y//////_I_Y/////////////////_/,

Sketch (b)

F2 (= TOTAL REACTION
AT THE GROUND)

as a result of a change in velocity (where msv is the bag mass in

motion). In the same time, the momentum change due to a change in mass is

dmsv(U). The total momentum change is msvdu + &msv(U) = (Fl + Fs)dt,

where shear forces due to gas or atmosphere are neglected or

! (rosyu) =FI +F2
dt

The force Fs brings the mass dmsv to rest in time dt. Here the

unrestrictive assumption has been made that the tension goes to zero

(the buckling stress of the bag) at the top of the element dmsv.

(2)

F£dt = u dmsv 3)

Therefore from equations (2) and (3)

du

F l = msv

From equations (i) and (4)

du =
(mp + msv) u -_y (p - lOa)A



If

Let

mb is the mass o- the sides of the bag, then

Y

msv--mb

(m _> du= )Ap +m b u _y (P " Pa

({_)

(7)

Y = Yo

_ u du: lUold_ __ c
luol lUol

(s)
A

5
7
4

then

UO 2

dy

mpuo2(l mbT) dW -+ _--:P -_ayopoA _Y d_

(9)

(lO)

If K is defined as

yoPoA PoVo mg RT o mg C-oa

mpuo a mpUo 2 mp Uo 2 mp 7

then

By definition

_[1 + (mb_/mp)]

dy

(ll)

(i2)

(13)

where

tl l
t -- y---g- (_4)
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Now to integrate equations (12) and (13), we need initial conditions and

a description of _ and _a" For very low impact speeds (high To) it is
probably adequate to describe _ by the isentropic relation

>v7 --l (15)

where

V-- (16)
Vo Yo

However, for high impact speeds, equation (15) is not adequate because

shock and rarefaction waves move through the gas, and the pressure must

be calculated accordingly. This will be considered in the next section.

Similarly_ we need to express Pa' On the moon_ it is zero. In an

atmosphere, the entire payload and inflated bag combination moving toward

the surface has a flow field around it, a wake, and a stagnation region.

When the bag strikes the surface, the flow is altered (including the wake)

and the pressure in the immediate neighborhood of the system varies with

space and time. A detailed treatment of this external flow field is

obviously very complicated. Although various approximations to the

external flow could be adopted, we adopt the simplest one possible and

say that the external pressure on the payload is represented by an

effective constant average, Pa" We now move on to the calculation of T

by considering the wave motion in the inflating gas.

The Wave Model in the Inflating Gas

Sketch (c) represents the most

general wave pattern in the inflating

gas. The curve abfd is a trace of

the payload motion in the space-time

plane. The heavy curves represent

the traces of shock waves and the

dashed lines; those of rarefaction

waves. At time zero_ the bottom of

the bag strikes the ground and shock

wave ob propagates upward (analogous

to the impulsively started piston).

At or near time zero_ stress relief

in the bag skin changes the motion of

the payload_ ab; causing a rarefaction

to propagate downward from ab. That

rarefaction intersects the initial

upward traveling shock at e. The

shock is modified by the rarefaction

and its trajectory eb is curved.

O

_f

c

[

Sketch (c)



The shock then reflects from the bottom of the payload at b and the
trajectory of the reflected shock bc is also curved. The reflected
head of the initial rarefaction wave crosses the reflected shock and
arrives at the payload at f. In general_ the computation of the pressure
at the payload depends on what happens in the entire wave system and is a
difficult computation for the complete wave system shownin sketch (c).

I

On the other hand_ if the change in forces (and motion) on the
payload due to stress waves in the skin is negligible comparedwith that
due to pressure waves in the gas_ the wave pattern is much simpler
(sketch (d)). This condition is approached if _2 - _a _ _o - _a and

O

i _ STATE 3

Sketch (d)

of a simple wave (ref. 12, p. 413).

is exact if P--o=_a (no overpressure).

Even if _a is zero (lunar impact) the

approximation is valid provided P2

is much larger than _o (corresponding

to small To). We will adopt the

simple wave pattern of sketch (d) and

focus our attention only on cases where

_2 - P--a_ I0(i - Ta)_ the arbitrary
factor i0 is considered conservative.

Thus the paths ab and ob are straight

lines. Paths bc and cd may be

curved_ but they do not influence the

path bd or the computation of the

pressure along bd except in locating

point d. Subsequently_ bc and cd

will be treated as straight lines and
will be discussed in detail.

If the payload comes to rest

before the point d is reached_ the

entire pressure computation is that

In the simple wave region

A

5

7
4

T+7- i_=_2+7 - l_2 2 u2 (17)

or

2



and from isentropic relationships (noting that _a = -i since the slope

of abd is continuous at b)

2_Z7 S_L

p- 2

Substituting equation (19) into (12) yields

2T

a__ 2 \ c2 /j (20)
mb

For convenience equation (13) is repeated

dr_ 1 (13)

The boundary conditions on equations (20) and (13) are at

at _=_b

- }u = -l

- %t=

(21)

Equations (20), (13), and (21) comprise the set of differential

equations and their boundary conditions whose solution is the motion of

the payload during impact. Before describing ways to obtain P--2,c--2,_b,

and t--b, it is instructive to integrate equation (20) formally for the

case _a = O.

Payload Velocity During Impact Witho1_ Atmosphere

Variables in equation (20) are at once sept'able (note that

set to zero)

d_ 1 _d_

i + _pp y 2_ 2 + i - % 7 - i
" 2_2 2_2

_a is

(22)



i0

Denoting

C_ _--

2_

m_

mp

-27

_=7_ I

> (23)

A

5
7
4

and noting that P--2and c--2 are constants determined by initial conditions

(as will be shown subsequently) we integrate equation (22) subject to

boundary conditions (21). This gives (since _ _ -i or -2)

y(_) = + exp _ + 2 _+ -_

(24)

Equation (24) represents the motion of the payload during impact in a

vacuum. It does not appear to be readily integrable again in combination

with (13) to yield Y(_). Note that at _ = 0,

(25)

For large C--o,c--2 is large and _ _ i, so that

Gin -* _b (26)

In the special solution of equation (25) and in the general problem 3

P--a,c--a,Yb' and tb are still not determined. These will now be deter-

mined from normal shock relationships.
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Normal ShockRelationships

Having adopted a s_nple wave model and incltded it in the differen-
tial equation of motion of the payload, we now compute initial conditions
just inside the simple wave region at b (sketch (d)) by three methods.

The first method is a series expansion. It has the advantage of simplic-

ity, and leads to explicit physical relationships. However, its validity

is limited to certain regimes of impact conditions. The second method

involves the use of exact shock relationships, and the third is the

strong shock approximation.

Series ex2ansion.- The series expansion relationships for properties

across a moving shock are valid as long as the shock is not too strong.

In the present paper the restriction on shock strength corresponds to a

restriction on c--o. It will be shown subsequently that if _o _ i_ there

will be an error in the series expansion computation of P--aand Yb of
i0 percent or less (for 7 = 1.41). This corresponds to a maximum value

of P--a of roughly 9 for use of the series expansion.

In addition to this restriction associated with the series expansion,

there is the further restriction associated with the wave model adopted

in sketch (d). For the wave model to be adopted it was required that

P'-a - P--a >> _o - _a = I - r" a

If P--a= 0, and since the upper limit on _2 _ 9, it is seen that the

inequality is not really satisfied in the strong sense by solutions using

the series expansion. Thus the series expansion should not be used for

impact without an atmosphere; the exact shock relations or strong shock

relations should be used instead. On the other hand, if _a = i, the

inequality is always satisfied_ the wave model in sketch (d) is applicable,

and the series expansion can be used as long as c--o is greater than unity

as mentioned above (but less than an upper bound that will be shown

subsequently).

From sketch (d), it is seen that

_o = -i

ZI = 0

_2 : -i

_s : 0

(27)
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The polynomial expansions of shock relations in terms of shock
strength are (ref. 12, p. i011).

2 2
(28)

(29)

Trajectory

<d_>shock ob

__o +to +_l +El _ 4_o + 7 - 3

= 2 4

ob is (integrating eq. (30))

(3o) A

5
7

(31)

and of course the trajectory of the payload ab is

_=l-t

From equations (31) and (32), solve for _ = Yb and t = tb

(32)

_'_o + 7 - 3 (33)
Yb : 4_o + 7 + i

4
%:4Vo+7+I

It is possible to stop at this point and compute _a which would

give all the information needed to start the integration of equations (20)

and (13). However, we also want to have some understanding of the extent

of the simple wave region so that we know whether or not the shock cd

reflects off the payload before the payload comes to rest. If that were

the case, we would be out of the simple wave region, and the simple model

would be invalid for that part of the motion after the reflection at d.

An approximate knowledge of the location of point d will satisfy pre-

sent purposes; so in the interest of simplicity, straight lines will be

used for both bc and cd. The computation of the pressure and motion
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in the simple wave along bd is not affected. Only the location of d

is affected. 2 The straight line bc is determimed by integrating the

equation

which leads to

When

7 = + 37 - l_%.-- ('So + 7 - 1_. _t+ \4_o +_' +_-/

7 = O, Y = Yc

tc =
m6(2_o + 7 - l)

(4_o +7 +1)(4_o +37- l)

(36)

State 3 at the ground is given by

_s = c-2 + 7 -I 3--T (_ - V_) = t o +-# (7 - l) (37)

The slope at the ground of the reflected shock cd is

<_)2 = _2 + c-2 +_3 +_3_ 4_o + 57 - 73 2 _ (38)

The equation of the straight line cd is (integrating (38) and saying

Y--c= 0 at Y = _c)

- 4 _ 16(2_o + 7 - l)
t = y + (39)

4_o + }7 - Y (4_o +7 +i)(4_o + 3v - l)

elt can be shos_m that bc curves right_ but that cd may curve left

or right. If both bc and cd curve right, the straight lines give a
conservative location for d inasmuch as solutions will be obtained for

which the payload comes nearly to rest before the approximate d is

reached in advance of the exact d. Also; if bc curves right and cd

curves left, one counteracts the other_ and the straight line is probably

satisfactory.
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The intersection of (39)with the payload trajectory obtained by the

simultaneous integration of equations (20) and (13) gives point d.

Next _2 is evaluated by the series expansion (ref. 12, p. i011)

T_A = I + 7(_i - _o) 7(7 + i) _u_ - Tk) 2_o _o + 4 _o + . . . (4o)

or

p--_ 47o2 + 4707 + 72 + 7

po 4_o_

P__a=1 -7 @ + + • •
Tl 4 _l

(41)

(42)

A

5
7
4

or

p-_: 4_o2 + 4(27- i)7o+ 472- 37 + 1 (43)
V_ 4_o_ + 4(7- i)_o+ (7- 1)2

From (41) and (43) since P--o= 1

[4_o2 + 4(27- 1)_o+ 472- 37 + 1][4_o2 + 4_o + 7(7+ l)]

P2 : 4_o2E4_o2 + 4(7- l)_o+ (7- l)2]
(44)

Thus the problem is completely formulated by the series expansion method.

To solve a given case, one specifies C--o,7, K, mb/mp, and [a" Then

equations (20) and (13) are integrated simultaneously subject to boundary

conditions (21), (33), and (34) where c--aand_ 2 are calculated from

equations (29) and (44). Each example should be checked to be sure that

= 0 by the time the intersection d has been reached (by use of

eq. (39))-

Exact shock relations.- If _o < i, it was stated (for 7 = 1.41)

the exact shock relations or the strong shock approximation must be used

for the computation of _2 to be accurate. It was also mentioned that

for impact without an atmosphere, _2 must be i0 or more for the wave

model to be valid. This requires that _o be less than i and thus the

exact shock relations need be used to determine the starting conditions

(_2, Z_, _, _b) for integration of the differential equations (20)

and (13). In addition, the assumed straight line trajectories, bc and cd,

should be computed by the exact shock equations.
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In sketch (e), the shock represented by the

solid line is moving into the gas at state i with

speed +Wij relative to the gas at state i. The
gas on the backside of the shock is at state j.

The plus sign on Wij denotes upward traveling
shocks (with respect to gas at state i) and the

minus sign denotes downward traveling shock waves.

The subscripts i and j used to denote states i

and j will eventually take on the pairs of val-

ues 0i_ 12j 23 when the shock relations are applied

J STAT E j

Sketch (e)

to the shocks connecting states O and i_ i and 2_ and 2 and 3 in

sketch (d). The exact shock relations made dimensionless by equations (8)

and (14) are (see ref. 12, pp. iOO1, 1002)

(_) _ -- l _i m _ _j2 _i + _jd_ = ui + Wij = ! + (45)
shock ij 7 - _i - _-[j 2

-- , - \ 2

p='7" \Tv-!/L\oi / __ (_)

cj.,,, _-1 + (7 + 1)_L_#i 7 -(._J' - (7 - l) (4T)

Solving equation (45) for Wij/ci and combining the results with
equation (47) yields

xi + Asxi s + Aaxi 2 + A_xi + Ao = 0 (45)

where

and

M

Wij
xi ------ (_9)

ci

A l = 0

= [(_+ i)
Aa

L 4_i 2

2

(7 + i) a
A a =

(5o)
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The application of the equations to the shocks connecting the ij

states 01, is as follows. It is noted that _o = -i, and _i = O.

Equation (48) is solved for xo by use of equation (50) where _i is

the specified c--o. The proper root xo is selected judiciously by

taking that root for which equation (45) is in closest agreement with

the approximation equation (30). The pressure _i is calculated by use

of xo in equations (46) and (49), and _l is obtained from equation (47).

Then equation (45) is integrated to give the equation of the line ob

(sketch (d)). The intersection of that line with that of equation (32)

locates point b.

In a similar manner, equations (45) through (50) are applied

successively to the ij states 12 and 23 to give values for _2 and _2_

locate point c, and give an expression for the line cd. The inter-
section of that line and the trajectory of the payload (resulting from

the integration of eqs. (20) and (13)) gives point d on sketch (d).

Thus the information needed to initiate the integration of the

equations of motion and that needed to estimate the regime of validity

of the simple wave model has been formulated by both a series approxima-

tion and the exact shock relations. Finally, it is instructive to

consider briefly the simplification that arises when the strong shock

approximation is made.

The strong shock a_roximation.- If the value of _i is small

enough, the quantity (_i/Wij) is small and (ref. 12, p. 1002) the

following relationships are valid

+ _ij _ 7 + l_j - _i
_i 2 _i

(51)

2 _ 7(7 " i) _<_j - _i_ 2
2 _i

(52)

_j_ 7(7+ 1)<_j i_ij]2 (53)

and as before

m

= _i -+Wij (5_)
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The application of these relationships %o obtain the approximate location

of points b, c, and d in sketch (d) proceeds the same way as for the

exact shock relations except that now it is not necessary to solve the

fourth degree equation for _ij/_i which can be computed directly from

equation (51). For example, point b is obtained by integrating equa-

tion (54 ) using equation (51) and combining the result with equation (32)

which yields the simple expression

-- 2

tb=7+ I

(55)

Similarly, the expressions for P--2and _2 are derived very simply from
equations(53) and (52)to be

- 7(7+ l)_ <. i_9_oi_ 7 i_ 1.41_]P2 = 2_-o2(7 _ l) _oa

fc_ - 7(7 - l)
2

(_6)

This relationship for P--2 is quite good if T o < i and could be used

where the series expansion (44) becomes invalid.

Auxiliary Physical Relationships

It is useful to bring other physical considerations to bear on the

problem. The problem of the motion of the payload during impact cam be

solved if 7, _o, K, mb/m p and _a are specified. The selection of

these quantities; however, may be influenced by consideration of the

maximum allowable number of g's acceleration, allowable stress in the

bag skin, initial inflating gas temperature, and other conditions. Thus

the auxiliary physical quantities should be related to the quantities

needed for solving the payload motion.

The maximum acceleration of the payload up to the end of the simple

wave regime occurs at state 2 in sketch (d) and is, from equations (12)

and (8),

{dQ'] = Uo2\_b nge = y-%--
"_2 - "_a

(SY)
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The circumferential stress in the bag skin is a maximum at state 3

because of Ps" However, the bag need not withstand this pressure as

long as failure caused by it does not propagate faster than the shock cd

(a nontearing bag material). Then failure at pressures behind cd does

not affect the motion of the payload in the simple wave region and the

maximum pressure the bag must withstand is P2" The corresponding

circumferential force per unit axial length (for a circular bag) is

(NC)b = r(P2 - Pa ) = Por(_2 " _a) (58)

The maximum axial force per unit circumferential length occurs at the

top of the bag at state 2 and is (from eq. (4))

(59)

where (du/dt)b is given in equation (57). Combining (58), (59), and (7)

yields

b (6o)

which shows that Nc

acceleration at b.

by equation (58 )

will be more than double Na for a positive

Therefore, the maximum allowable stress is given

Nmax = por(Z2 - _a) (61)

Application of equation (57) at state 2 using equations (Ii) and (61)

yields

i + mb- _rNmax
_Yb = mpng e (62)

Because

mb : 2_rYoP s (63)

(where Ps is the mass of skin per unit area)_ equation (62) becomes

-_ l (64)

2Yonge
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Combining equation (64) with equation (57) yields another useful

relat ion ship

,Uo _- (d5)

If the total mass of the system is

m = mg + mp + mb + mbotto m (_6)

(where mbottom is the mass of the bag bottom) and the same material is

used for the bag sides and bottom so that

mbottom = _r2Ps = mbr (6[)

2Y o

then

(,d8)

Briefly, to solve a practical impact problem, one may proceed as

follows: Specify Y, P--a,To, and uo. Then calculate co from

to : (69)

Also calculate P--2,_2 and _b from equations (44), (29), and (33)

(if _o _ i) or by the use of equations (46), (47) , and (45) _ith

associated relationships (if _o < i); or use curves which will be pre-

sented subsequently to determine P--e,c--e,and_b" Specify Nmax/P s.

Use equation (65) to obtain a suitable set of values of mb/m p and K by

trial and error, so that for the _o calculated, n%/mp and K fall vithin

the regime of validity of the theory. (Use of a subsequent figure of

regimes of validity will be helpful.) This guarantees that Nma x will

not be exceeded. Calculate m_mp from equation (ii). Specify r/y o

(with buckling considered as noted earlier). Calculate mp/m from
equation (68). Finally_ specify n and calculate Yo from equation (64)

and thus r is determined. The motion of the payload is, of course,

determined when the necessary quantities are used as inputs to solve

equations (20) and (13) simultaneously.
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RESULTS

The differential equations (20)and (13) subject to boundary

conditions (21) were integrated numerically using the Ad_s-Moulton

(ref. 13, P. 200, eqs. 6.6.2) predictor corrector method on an IBM 704

electronic data processing machine. Initial conditions for the integra-

tion were obtained by both the approximate and the exact methods described.

These are presented and compared in the first three figures. Results

obtained by the actual numerical integration are presented in the last

three figures.

Figure i is a comparison of the first two methods of computing _2"
It is seen that for large values of To, either the exact shock relations

or the series expansion method (eq. (44)) gives the same value of _2"

At _o = i, the series method gives a value of _2 approximately !0 per-
cent lower than the exact method. For this reason_ the series method

should not be used for values of T o < i. However, for values of T o < i,

the strong shock approximation (eq. (56)) is sufficiently accurate that

it cannot be distinguished from the exact shock relations on the figure.

Since Ta was computed assuming that _a = -i (i.e., line ab in
sketch (d) is straight ), the criteria derived for the validity of the

wave model apply to the figure. Thus the regime for _2 _ i0 (_o > i) is

not valid if _a = O. For 92 > i0 (To < i) the wave model is val_d

for Ta _ 0.

In many places in the analysis, the quantity Yb appears in physical

relationships. Like _2, it has been computed by the series expansion

equation (33), exact shock relations, and the strong shock approximation

equation (55) and is shown in figure 2. The restrictions on the applica-

bility of the curves to the left and right of T o = i noted here are the

same as those on the _2 curves of figure i. In its range of applica-

bility, the series expansion yields good agreement with the exact shock

relations for Y--b'and the two methods yield almost identical results for

values of T o > 4. The strong shock approximation, however, gives a

value of Yb independent of T o as shown.

The quantity _2 required for the integration of equation (20) is

presented in figure 3. Like _2 and _b' it has been computed by the
exact method, the series expansion equation (29), and the strong shock

approximation (56), and has the same l_itations imposed above. The

series and the exact methods give very good agreement, but the strong

shock approximation gives a crude single value of _2.

The regime of validity of the simple wave model for _a = i is shown
in figure 4. The lower limit for the series solution is at co = i and

corresponds to the limit on use of series shock relations. Thus the

series shock relations are valid in most of the regime of validity of the

simple wave model. The upper limits on _o (mentioned earlier) for the
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various values of mb/m p correspond to the situation in which the second

shock, cd in sketch (d), just gets to the payload as it comes to rest.

It is an approximate limit on the regime of th_ simple wave model.

A corresponding plot of the regime of validity for the case _a = 0

is shown in figure 5. The same comments apply except that part of the

upper limit is determined by the value T o _ i to insure that _2 --_i0

in accord with the criteria developed in the analysis. Thus, application

of the present wave model to impact without atmosphere is limited

essentially to situations in which 0 _ _o _ i.

The solutions of the differential equations 20) and (13) are

presented in figure 6 for one impact condition. The solutions were

obtained by use of both series and exact metho_ls for a value of

_o = 1.$74 (which is not expected to give outstanding agreement). The

differences in Y--band Y--rain between the two m_!.thods are about 2 and

5 percent, respectively. The difference in _2 is about 3 percent.
The velocity computed by the series method decays at about the same rate

as that computed by the _xact method but lags by about _ percent of the

initial speed at any giv._n instant. Thus the _greement between the two

methods is satisfactory.

CONCLUDING REMARKS

A theory of impact cushioning by use of cylindrical gas bags has

been developed. The theory is applicable to high-speed impact conditions

because unsteady gas dynamic phenomena have beon incorporated in the

analysis by the use of a simplified mathematic_l model for the waves in

the gas. The influence of the bag skin forces on the motion of the pay-

load has also been accounted for in the analysis. The shock waves in

the gas are treated by exact relationships, the strong shock approxima-

tion, and a series expansion. The last two treatments lead to relatively

simple useful physical relationships for ana_y_ing the impact motion.

The methods are compared, and the regime of validity of each, as well

as the regime of validity of the basic wave mo_el, is evaluate!. Curves

of some physical results are presented which can be used with equations

presented for calculation purposes.

Ames Research Center

National Aeronautics and Space Administration

Hoffett Field, Calif., Jan. 12, 196.2
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